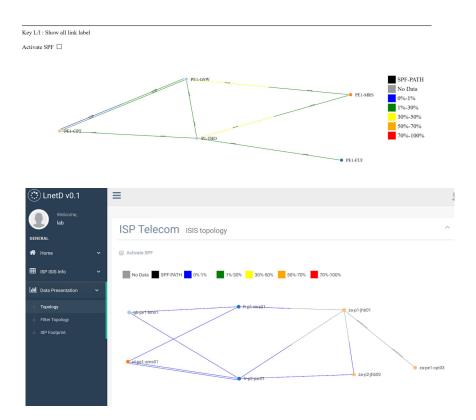
LnetD network discovery

Based on IGP information

Catalin Petrescu @cpetrescu

About me/project


Network engineer focused on SP networks

0 0 0 0	Not a	ged quite a few jobs(small and big ISPs) , need to learn their network fast. Il of them had tools / diagrams <insert gif="" here="" shock=""> had but limited access to new hire's :) , so no day one topology for me. ed with all 3 big modeling tools (Car , Wan, Pa) <- those are better go buy one</insert>	
Build one based on information from ISIS MPLS-TE extensions			
0 0 0 0	JNP 3	ISIS speaker/parser (no hello/lsp auth) - legacy (fire up a vMX/XRV) JNP XML (see next slide) IOS XR (netconf links and routers via mpls-te yang oper model) BGP-LS (maybe in the future)	
Started as a fork of eNMS (https://github.com/afourmy/eNMS) <- big thanks , go check his project out			
	0 0 0	Frontend bootstrap html Backend python flask D3js for network graphs using parallel links (someone did half of the math for me https://webiks.com/d3-js-force-layout-straight-parallel-links/)	

History

2017 ← → C □ file:///C:/Users//Desktop/d3js/index.html Filter by source AND target : inxpgt Submit Key L/l : Show all link label file:///C:/Users/catalin.petrescu/Desktop/d3js/v4/github/index.html Select traffic levels from last 0 hours ago Hours: refBW 10Gbps No Data 1%-30% 30%-50% 50%-70% 70%-100%

2018

Topology acquisition - JNP XML

```
lab@ke-pe3-nbi> show isis database ke-pe2-nbi.00-00 extensive | display xml | find "IS extended neighbor:"
                 <reachability-tlv heading="IS extended neighbor:">
                     <address-prefix>ke-pe3-nbi.00</address-prefix>
                     <metric 10</metric>
                     <isis-reachability-subtly>
                         <address>10.2.3.2</address>
                     </isis-reachability-subtlv>
                     <isis-reachability-subtly>
                         <neighbor-prefix>10.2.3.3
                     </isis-reachability-subtly>
                Sglite3 Database
 sqlite> select * from rpc links where source='ke-pe2-nbi' and l ip='10.2.3.2';
 index|source|target|metric|l ip|r ip|l ip r ip
```

ke-pe2-nbi|ke-pe3-nbi|10|10.2.3.2|10.2.3.3|('10.2.3.2', '10.2.3.3')

Topology acquisition - XR Netconf XML

```
<isis xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-clns-isis-oper">
                                       <topology-node-link>
                                         <topology-link-type>p2p</topology-link-type>
  <instance-name>64</instance-</pre>
                                         <topology-link-interface-address>10.2.3.2</topology-link-interface-address>
                                         <topology-link-interface-id>331</topology-link-interface-id>
                                         <topology-link-neighbor-address>10.2.3.3</topology-link-neighbor-address>
    <system-id>0000.0000.0002<</pre>
                                         <topology-link-neighbor-id>331</topology-link-neighbor-id>
    <host-name>ke-pe2-nbi</hos
                                         <topology-link-neighbor-system-id>0000.0000.0003.00/topology-link-neighbor-system-id>
                                         <topology-link-neighbor-node-id>2</topology-link-neighbor-node-id>
                                         <topology-link-neighbor-generation>53688</topology-link-neighbor-generation>
    <system-id>0000.0000.0003
                                         <topology-link-fragment-id>0</topology-link-fragment-id>
    <host-name>ke-pe3-nbi</hos
                                         <topology-link-te-metric>10</topology-link-te-metric>
                                         <topology-link-igp-metric>10</topology-link-igp-metric>
```

```
Sqlite3 Database
```

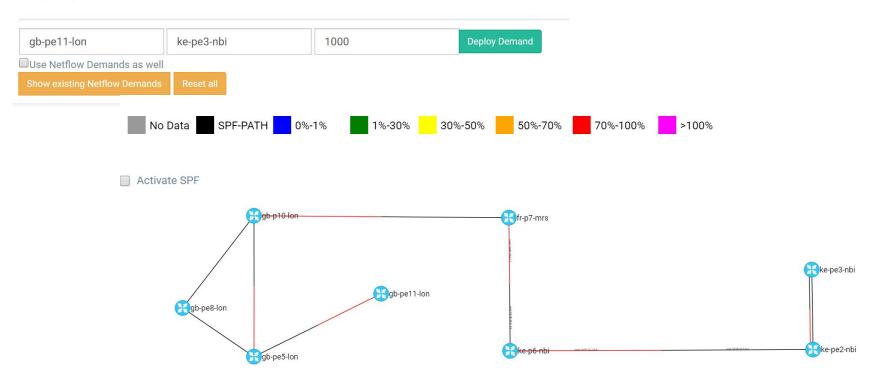
```
sqlite> select * from rpc_links where source='ke-pe2-nbi' and l_ip='10.2.3.2'; index|source|target|metric|l ip|r ip|l ip r ip
17 ke-pe2-nbi|ke-pe3-nbi|10|10.2.3.2|10.2.3.3| ('10.2.3.2', '10.2.3.3')
```

Data enrichment

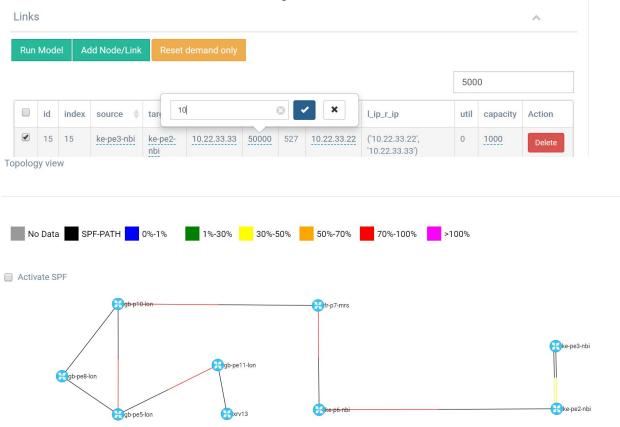
```
sysDesc
                                                                                                                   Ifindex ip map
                                                                                                                  ifHCInOctets
ifHighSpeed = Capacity
                                                                                                                  ifHCOutOctets
ifHCoutOctets = Util
                                                                                                                  ifHighSpeed
ifIndex = I int
                                                                                                                  ifIndex
                                                                  Get ifIndex for IP: 10.2.3.2-
                                                                Get ifHCOutOctets for ifindex: <X>-
                                                                -Get ifHighSpeed for ifindex: <X>-
                                                                                                Influx
                                             LnetD Python
                                                                                                                                              Node
                                                                                               Telegraf
```

index|source|target|metric|l_ip|r_ip|l_ip_r_ip|l_int|util|capacity|errors
17|ke-pe2-nbi|ke-pe3-nbi|10|10.2.3.2|10.2.3.3|('10.2.3.2', '10.2.3.3')|523|4102|1000|0

D3js Network Graph

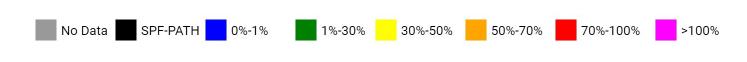


D3js Network Graph - SPF Calculation

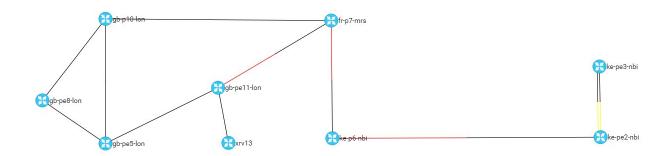


What if scenario - Capacity planning, add demand

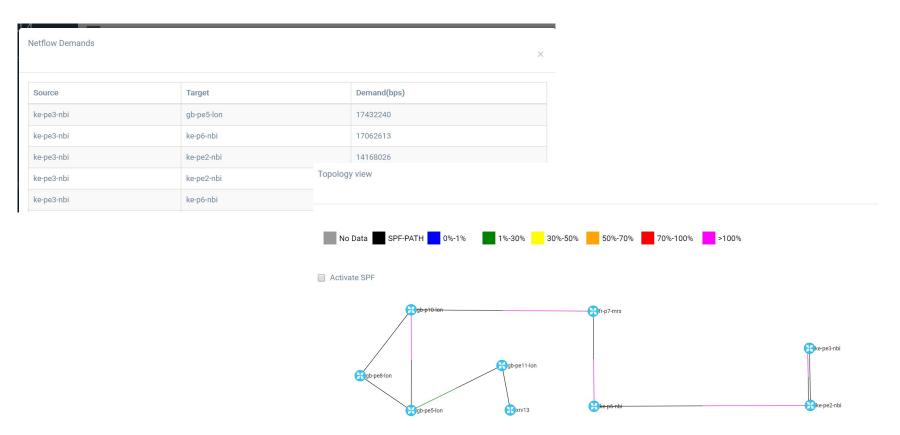
Deploy Demand



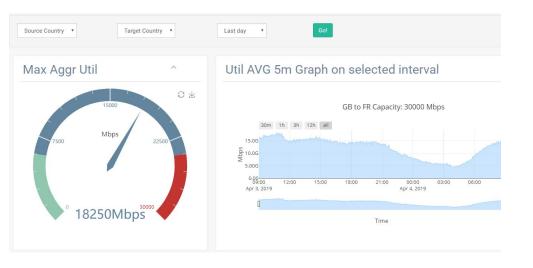
What if scenario - Change metric



What if scenario - Add IGP Links / RSVP-TE Tunnels


Topology view

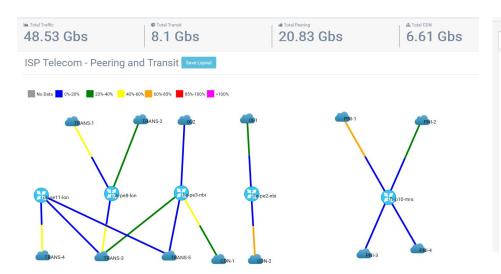
Activate SPF

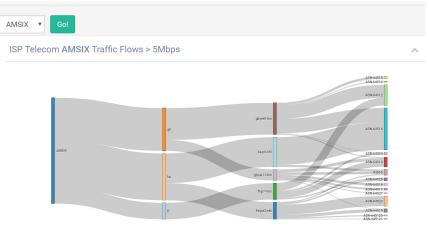


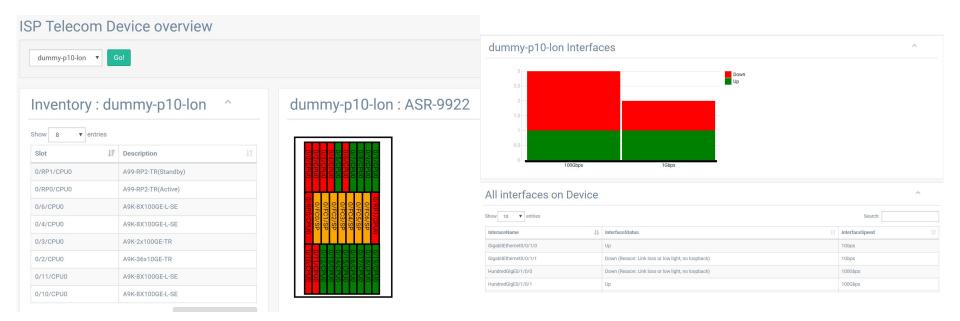
What if scenario - Add netflow based demands

- CC to CC capacity and util (dummy data)
- PoP Map (dummy data)

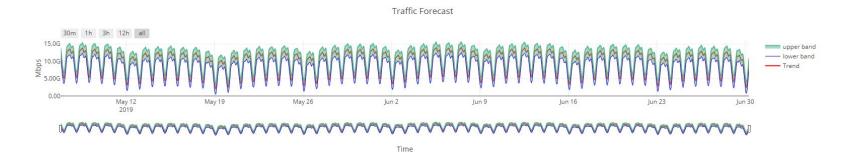
ISP Telecom International PoPs Capacity






- P&T capacity map (dummy data)
- Netflow Data (dummy data)

Device/Interface Inventory



- BGP Peer Inventory
- Traffic forecast

▼ entries Search: Neighbour J↑ UP Neighbour IP Remote ASN Type Uptime 10.2.2.2 ke-pe3-nbi PEER1-ASN2 peering IX-LINX01 36 days 07:12:00 0 iBGP-R5 10.5.5.5 internal n/a 25 days 05:06:00 ke-pe3-nbi ke-pe3-nbi IRGP-R7 10.7.7.7 internal n/a 25 days 05:06:00 iBGP-R8 10.8.8.8 0 days 00:20:00 ke-pe3-nbi internal n/a iBGP-R11 10.11.11.11 internal n/a 0 days 00:18:00 ke-pe3-nbi iBGP-R13 10.13.13.13 internal 0 days 00:17:00 IPT-CST-ASN22 10.22.22.22 22 0 customer -1 3 days 23:50:00 n/a Traffic Forecast with fbProphet Forecast Previous Next


ISP Telecom **BGP PEERS**

^

Demo time

demo.Inetd.co.uk

