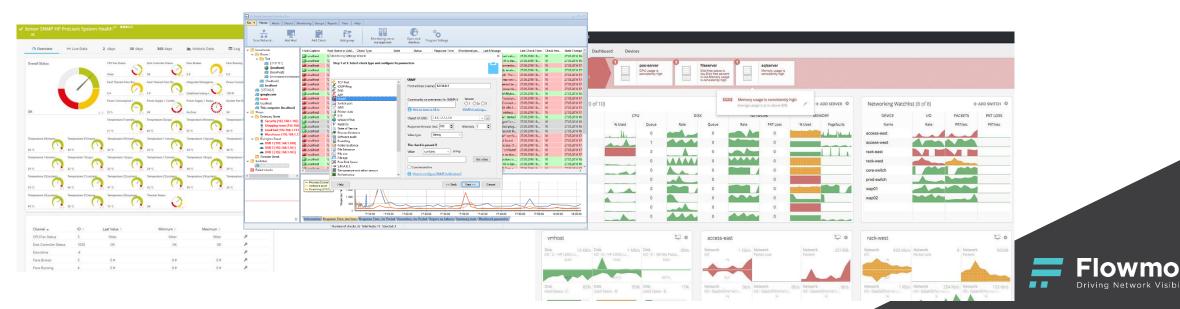

Approaches to Network Visibility

Challenges of visibility in network environment

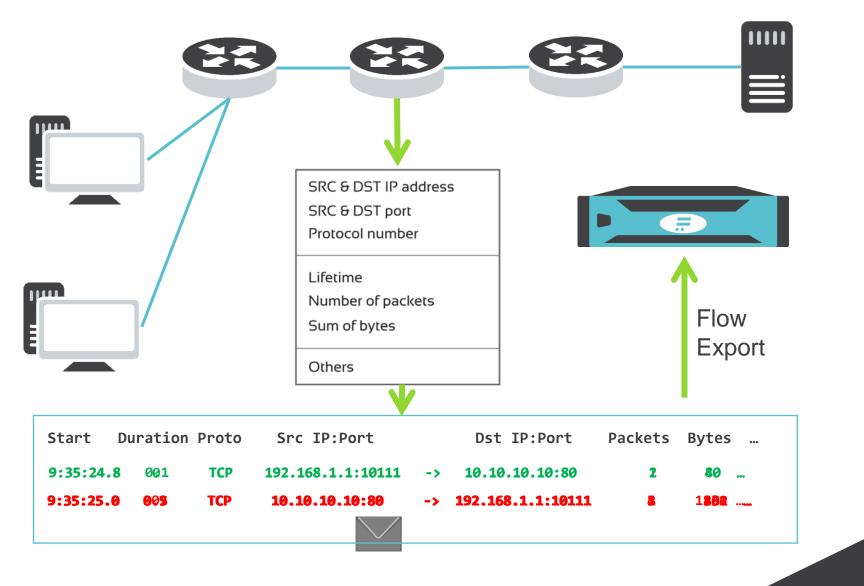
Jiri Knapek, Presales Team Leader RONOG 6, October 1st, 2019


Technology Approaches

Flowmon

SNMP (Simple Network Management Protocol)

- Allows basic monitoring of equipment generally used to see utilization of different resources.
- You can use also for proactive monitoring utilizing traps
- Helps you quickly to understand that there is a problem
- We can refer to it as infrastructure monitoring


What is Flow Data?

Modern method for network monitoring – flow measurement Cisco standard NetFlow v5/v9, IETF standard IPFIX Focused on L3/L4 information and volumetric parameters Real network traffic to flow statistics reduction ratio 500:1

Flow Monitoring Principle

Flowmon Driving Network Visibility

Flow Export Principle

TCP FIN/RST

IP flow-cache timeout active 300s

IP flow-cache timeout inactive 30s

Standard	Vendor	Details
NetFlow v5	Cisco	Original standard for flow monitoring supported by many routers and switches. Fixed format and set of attributes focusing on L3/L4 network information. Considered as obsolete now due to many limitations like missing IPv6 traffic information or no extensibility. Supported by many monitoring tools and applications.
NetFlow v9	Cisco	Extended flow monitoring standard dealing with limitations of version 5. Provides IPv6 traffic monitoring, information from L2 like MAC addresses or VLAN tags. Details are covered in RFC 3954.
Flexible NetFlow	Cisco	Similar standard to NetFlow version 9 with more flexibility on flow export configuration and customization on key fields and what information is being exported. Flexible NetFlow extends monitoring to L7 by technology NBAR2 (Network Based Application Recognition).

Standard	Vendor	Details
jFlow	Juniper	Juniper standard for flow monitoring available in both version v5 and v9. The main difference compared to NetFlow is that timestamps of exported flow data are preserved for whole network session which needs handling on colector side. In general this standard is compatible with NetFlow.
NetStream	Huawei	Huawei standard for flow monitoring available in both version 5 and 9. This standard is compatible with NetFlow.
cflowd	Alcatel- Lucent	Alcatel-Lucent standard for flow monitoring available in both version 5 and 9. This standard is compatible with NetFlow however usually available only as sampled flow data.

Flow Standards – Other Vendors

Standard	Vendor	Details
IPFIX	Independent	Independent international standard that enables vendors of flow based monitoring tools like Flowmon to define own protocol extensions to export literary any information from L2 to L7. Flowmon is a pioneer of this technology providing visibility into many application protocols since 2012 with continuous grow of supported protocol scope. This is crucial technology that enables to deliver unique network visibility without the need of continuous packet capture, integrate NetOps & SecOps into single platform and scale in multi 100G environment. Specifications for IPFIX are covered by RFC 7011 through RFC 7015, and RFC 5103. In Cisco environment IPFIX is usually referred to as NetFlow v10.

Flow Standards – Independent

Standard	Vendor	Details
NEL/NSEL over NetFlow	Cisco	NEL stands for Network Event Logging which refers to logs from network address translation. NSEL stands for Network Security Event Logging which refers to firewall logs produced by Cisco ASA. NetFlow is just transport protocol. This data cannot be considered as flow, information provided does not enable to reconstruct a real network traffic chart.
sFlow	Independent	sFlow is an industry standard technology for monitoring high speed switched networks. Sampled packet headers are encoded to NetFlow like format and exported to collector. Due to heavy sampling rates (usually 1:1000) this data is not accurate enough to handle troubleshooting uses case or network based anomaly detection.
NetFlow Lite	Cisco	NetFlow Lite is Cisco version of sFlow with all pros and cons related to this technology.

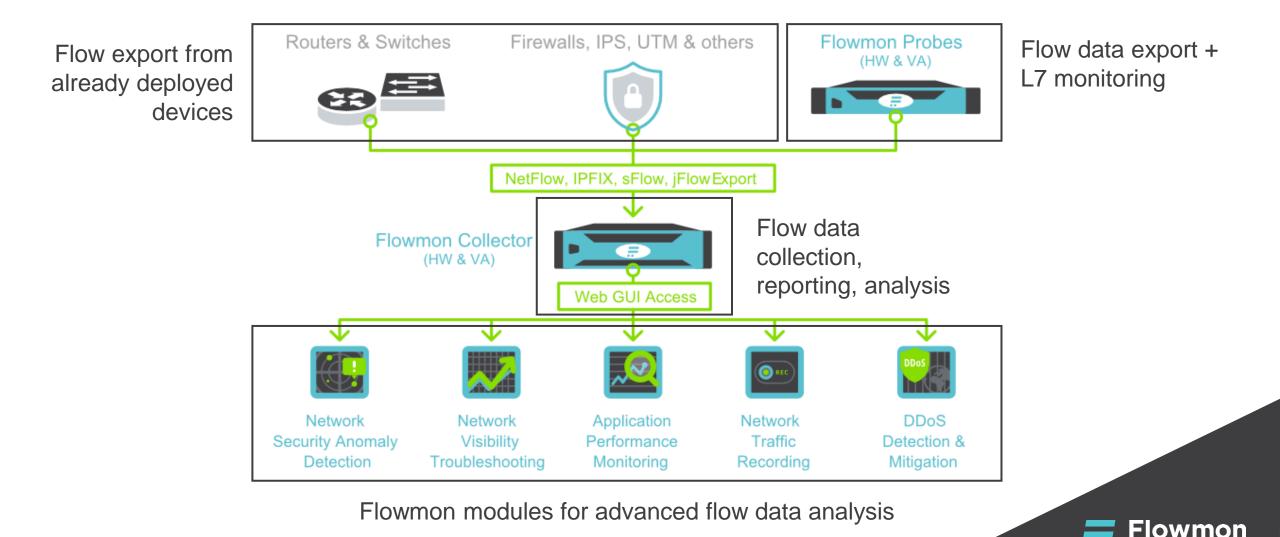
Flow Standards – Related

	Flow vs. Packet Analy	sis on 10G	Backbone	
	Strong aspects	Weak aspects	S	
Packet Analysis	 + Full network traffic + Enough details for troubleshooting + Supports forensic analysis + Signature based detection 	 Usually too 	or encrypted traffic o much details urce consuming	
Storage required	1 min 75 GB	1 hour 4.5 TB	1 day 108 TB	
Flow Data	 + Works in high-speed networks + Resistant to encrypted traffic + Visibility and reporting + Network behavior analysis 	- Sometimes	ation layer data s not enough details (routers, switches)	
Storage required	1 min 150 MB	1 hour 9 GB	1 day 216 GB	
				Flown

Myth:

Flow data do not provide sufficient level of detail when it comes to network troubleshooting or forensics. Full packet traces are absolute must to investigate on network issues and fight cyber crime.

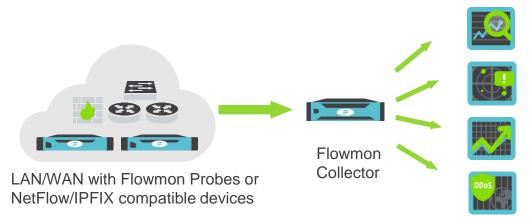
Reality:


Continuous full packet capture tools cannot scale with bandwidth explosion in corporate networks and companies are switching to flow technologies.

Gartner notes that 80% of network troubleshooting can be solved with NetFlow.

Flowmon combines best of breed: flow data enriched with L7 and performance metrics. This helps to solve 95% of all troubleshooting cases. In addition, Flowmon provides on-demand packet capture when flow visibility is not enough.

Flowmon Architecture


Driving Network Visibility

Flowmon Architecture and Components

Flowmon Probes

- Passive source of NetFlow/IPFIX data
- **Flowmon Collectors**
 - Flow collection, reporting, analysis

Flowmon modules

Network Security Anomaly Detection

Application Performance Monitoring

DDoS Protection

Flowmon Probe The most powerful NetFlow / IPFIX Exporter for Network Monitoring

Challenges

Network troubleshooting using packet capture is very resource consuming

Only feasible alternative is to **use flow data** with information about network communications

Flow data exported from active device may not be available, accurate or detailed enough

Use dedicated high-performance and accurate flow data exporters

Flowmon Probe - dedicated flow data exporter providing visibility into the application protocols

Gartner

Gartner last year stated that flow analysis should be done 80% of the time and that packet capture with probes should be done 20% of the time.

Monitoring Recommendations

- Implement the use of advanced flow-based data sources to allow better measurement of the user experience.
- Implement flow-based monitoring technologies extensively, and leverage probes where detail is needed. Using a single platform for both makes management easier.

Flowmon Probe

High-performance standalone probe – source of unsampled flow records in NetFlow v5, v9 and IPFIX

L2/L3 invisible – transparent for monitored network

Rack mountable hardware and virtual appliances

Remote configuration via a user-friendly web GUI

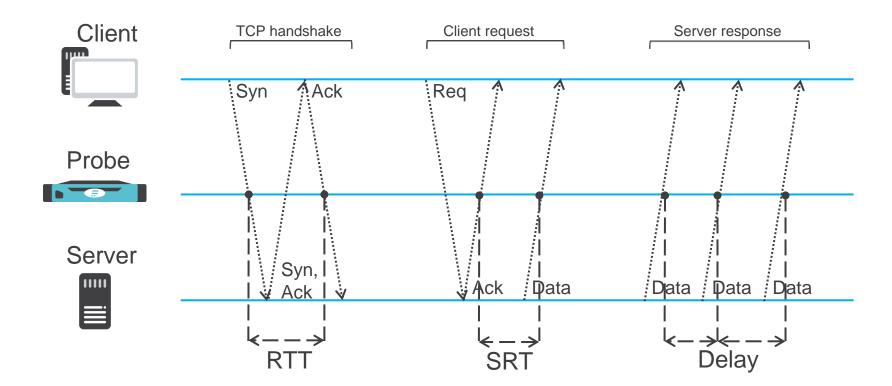
Maintenance-free appliance with simple configuration

Flowmon Probe Visibility Options

Versatile and flexible network appliances

- Monitoring ports convert packets to flows
- Un-sampled export in NetFlow v5/v9 or IPFIX
- Wire-speed, L2-L7 visibility, tunnel decapsulation, PCAPs when needed

L2	L3/L4		L7
 MAC VLAN MPLS GRE tunnel OTV ESP 	 Standard items NPM metrics RTT, SRT, TTL, SYN size, ASN (BGP) Geolocation VxLAN 	 NBAR2 HTTP SNI DNS DHCP IEC104 	 SMB/CIFS VoIP (SIP) Email SQL SSL/TLS CoAP


Network Performance Monitoring

Provides insight to performance of your network SRT (Server Response Time) – server delay RTT (Round Trip Time) – network delay Delay, Jitter, TCP Retransmissions

Color	Start Ti first se		Durat	tion	Sour	ce IP addre	255	Flows	Input Packets	Inp Byt	ut	Packets per second	Bits pe secon	Der	Res	Server ponse ne Avg
1	2016-0 11:3	08-02 35:17	2 h, 1 29.0	4 m, 624 s		192.168.	0.42 💷	4.85 K (2.8%)	234.58 K (6.0%)		MB .0%)	29	175	62 75	1 s,	766.897 ms
2	2016-0 11:1	08-02 19:31	2 h, 2 45.9	29 m, 953 s		192.168.0	.252 🖵	27.89 K (16.2%)	1.26 M (32.0%)		GB .3%)	140	11075	36 988	970).084 ms
	2016-0	08-02	2	2 m,				28	132	38.8	3 KB		-	204	270	(22
art Time - first seen	Duration	IP Proto		Sour add		Source Port		nation IP Idress	Destina Port		Bytes	Flows	TCP Flags	NPM Round Time Av		NPM E Aver
2016-08-02 09:38:54.282	0.105 s		тср	192.1	묘 68.0.10	63393	22	r anal 🛛		80	354	1	AP.SF	30.9	910 ms	10.
2016-08-02 09:39:02.140	1.843 s		тср	192.1	묘 68.0.10	63394	296.75	ner an s		443	52022	1	AP.S.	45.1	77 ms	40.
2016-08-02 10:48:41.663	9.216 s		тср	192.1	口 68.0.10	63400	185.2	C. 200 9		80	1515	1	AP.SF	124.5	50 ms	696.
2016-08-02 11:26:47.993	4.168 s		тср	192.1	⊑ 68.0.10	63401	-	6.21.5K 9		443	9204	1	AP.SF	190.8	891 ms	154.
2016-08-02 11:37:48.459	0.647 s		тср	192.1	묘 68.0.10	63405	22	r ar ar ar		80	874	1	AP.SF	238.1	24 ms	94.
												Flows 5		Bytes 62.47 K	R	Pac

NPM Principles

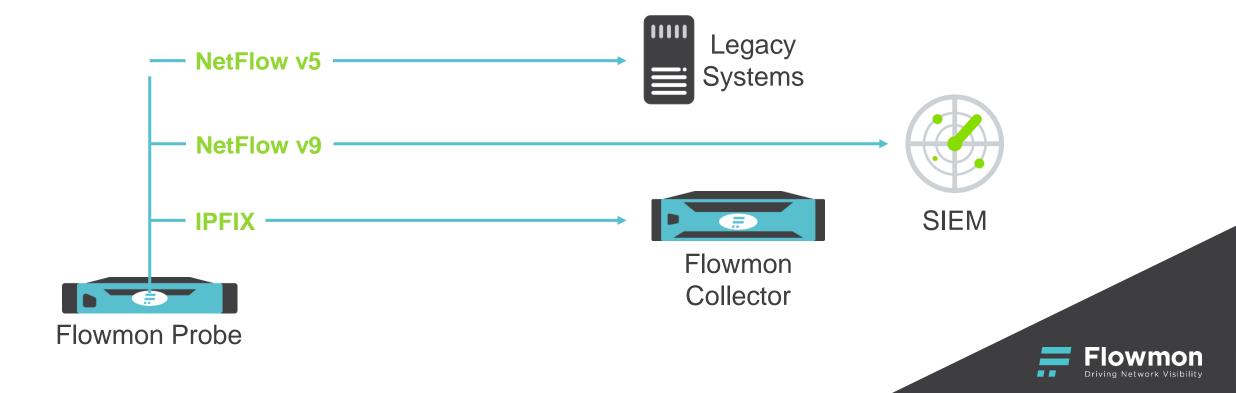
Round Trip Time – delay introduced by network Server Response Time – delay introduced by server/application Delay (min, max, avg, deviation) – delays between packets Jitter (min, max, avg, deviation) – variance of delays between packets

Other Export Capabilities

Network Based Application Recognition (NBAR2)

 Flowmon Probe analyse packet on L7 and export information about used application

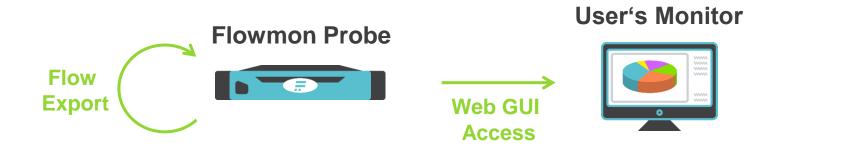
Color	Start Time - first seen	Duration	NBAR2 App Tag	Flows	Input Packets	Input Bytes	Packets per second	Bits per second	Bytes per packet
1	2016-07-01 05:40:46	3 h, 46 m, 30.935 s	ipsec	81 (0.1%)	238.98 K (27.7%)	148.99 MB (41.7%)	17	91961	653
2	2016-07-01 05:44:48	4 h, 4 m, 12.655 s	рор3	312 (0.3%)	102.21 K (11.8%)	92.83 MB (26.0%)	6	53143	95
3	2016-07-01 05:44:18	4 h, 4 m, 54.969 s	http	4.51 K (4.4%)	53.22 K (6.2%)	29.87 MB (8.4%)	3	17051	58
4	2016-07-01 05:41:46	4 h, 7 m, 37.390 s	syslog	1.58 K (1.5%)	68.71 K (8.0%)	17.76 MB (5.0%)	4	10026	27
5	2016-07-01 06:16:16	3 h, 32 m, 56.326 s	secure-http	915 (0.9%)	24.55 K (2.8%)	15.55 MB (4.4%)	1	10206	66
6	2016-07-01 05:44:27	4 h, 4 m, 56 s	snmp	39.4 K (38.0%)	114.78 K (13.3%)	13.6 MB (3.8%)	7	7761	12
7	2016-07-01 05:58:28	3 h, 50 m, 46.857 s	cifs	1.09 K (1.0%)	61.54 K (7.1%)	9.65 MB (2.7%)	4	5847	16
8	2016-07-01 05:44:44	4 h, 4 m, 19.754 s	icmp	2.93 K (2.8%)	83.42 K (9.7%)	8.41 MB (2.4%)	5	4810	10
9	2016-07-01 05:44:45	4 h, 4 m, 42.041 s	dns	44.71 K (43.1%)	46.33 K (5.4%)	7.73 MB (2.2%)	3	4415	17
10	2016-07-01 05:44:17	4 h, 4 m, 44.207 s	sip	1.76 K (1.7%)	7.56 K (0.9%)	4.27 MB (1.2%)	0	2436	59
Other	2016-07-01 05:40:37	4 h, 8 m, 43.774 s	other	6.46 K (6.2%)	61.76 K (7.2%)	8.34 MB (2.3%)	4	4690	14
						Flows 103.3	74 K Bytes 3	56.99 MB	Packets 863.05


Autonomous System information

 Probe exports information about source and destination AS based on default or custom AS list

Other Export Capabilities

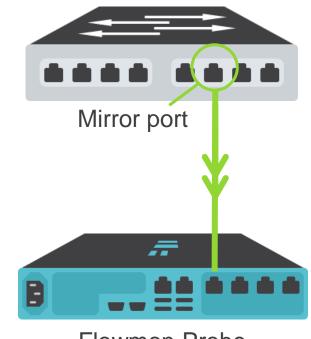
- Optional sampling on packet and flow level
- Export to more devices in various flow formats at the same time


Hardware Appliance

Two modes of operation

Exporting to collector

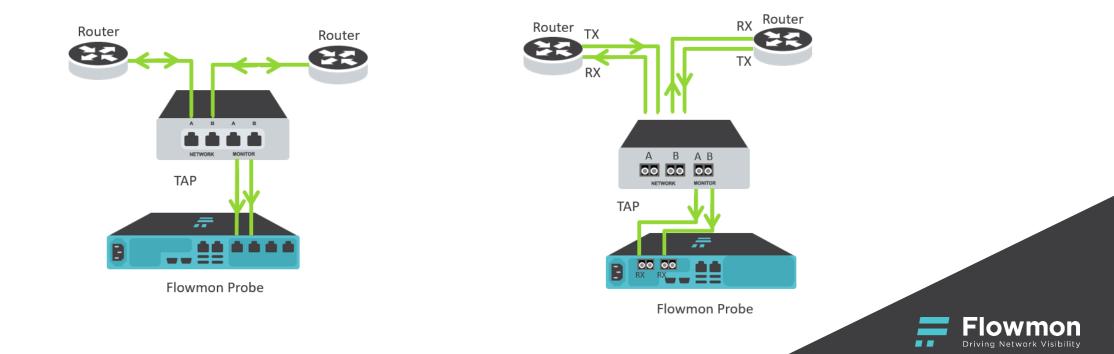
Exporting to built-in collector



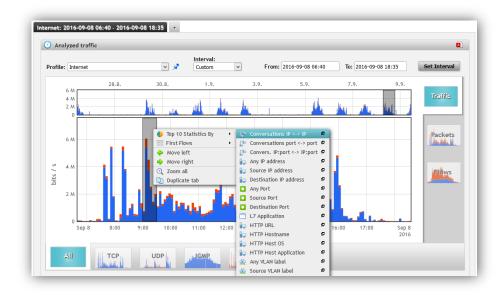
Flowmon Probe Connection

Using mirror port on switch

- Traffic mirroring from one or more switch ports
- Requires a free port on switch with enough bandwidth
- LAN monitoring


Flowmon Probe

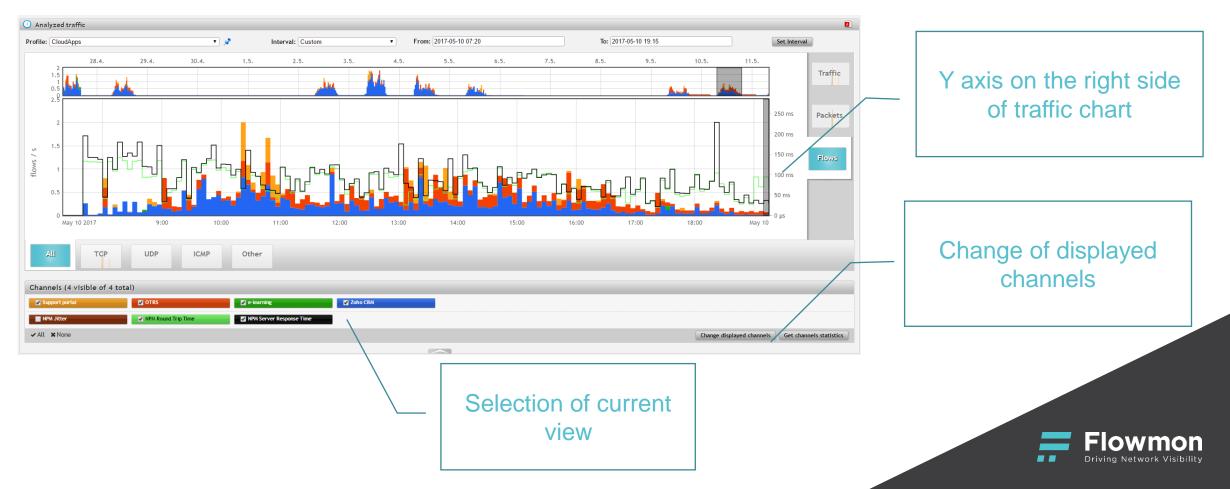
Flowmon Probe Connection


Using TAP

- Traffic mirroring from one full-duplex link
- Requires two ports on probe
- Backbone links monitoring (ISP), Internet connection

Monitoring Center (FMC)

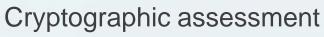
Application for flow data storage and visualization Graphs, tables and form for further data processing Top N statistics (users, sites, services) Predefined set of profiles (views) for standard protocols User defined profiles (based on IP address or ports) Alerts, thresholds



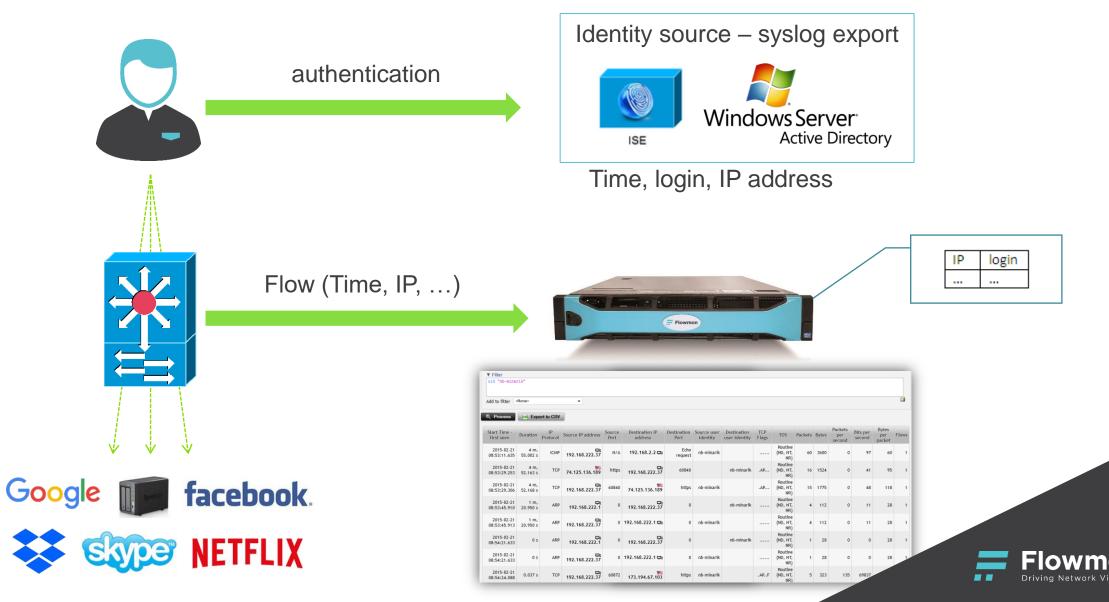
Edit Profiles		
Profile	Channels	Tools
live Type: live Size: 373.61 MB of 74.87 GB	p3002 p3001 p3004 p3000	🥕 Edit
IPv4_IPv6 Type: continuous Size: 347.2 MB of 12.33 GB	IPv6 IPv4	🖋 Edit 🛛 🏦 Delete
messanger Type: continuous Size: 67.88 MB of 6.17 GB	msn_messanger irc jabber icq	🥖 Edit 🏾 🏦 Delete
posta/mail Type: continuous Size: 302.72 MB of 901.92 MB	vnvnv smtps pop3 spop3 imap imaps smtp	🖋 Edit 🏾 🏦 Delete
routers Type: continuous Size: 101.81 MB of 3.52 GB	ospf gre egp igp bgp rip	🖋 Edit 👔 Delete
service Type: continuous Size: 136.5 MB of 2.64 GB	snmp snmp trap smtp dns dhcp smb telnet	🥖 Edit 🏾 🏦 Delete
user Type: continuous Size: 147.11 MB of 6.17 GB	http://https//ftp//ssh	🧨 Edit 👔 Delete

Network Performance Visualization

Visualize network performance metrics over time frame
 RTT, SRT, Jitter per profile/channel


Encrypted Traffic Analysis

- Analysis of characteristics and patterns, not decryption
 - L3/L4: src/dsct IP:port, protocol, timestamp, data volume
- Leveraging unencrypted part of the TLS traffic
 - SSL/TLS handshake


Monitoring and security

- Malicious patterns in encrypted traffic
- JA3 fingerprinting to pinpoint suspicious actors
- Handshake Protocol: Client Hello Handshake Type: Client Hello (1) Length: 220 Version: TLS 1.2 (0x0303)
 Random Session ID Length: 0
 - Cipher Suites Length: 38
 - Cipher Suites (19 suites) Compression Methods Length: 1
 - Compression Methods (1 method) Extensions Length: 141
 - Extension: server_name
 - Extension: elliptic_curves
 - Extension: ec_point_formats

- SSL/TLS policy compliance
- Cipher suites (encryption algorithms, key lengths)
- Certificates

User Identity Awareness (Collector)

Thank you

Performance monitoring, visibility and security with a single solution

Flowmon Networks a.s. Sochorova 3232/34 616 00 Brno, Czech Republic www.flowmon.com

Flowmon